Decreasing the mean subtree order by adding k edges

Stijin Cambie ${ }^{2 *}$, Guantao Chen ${ }^{1 \dagger}$, Yanli $\mathrm{Hao}^{1 \ddagger}$, Nizamettin Tokar ${ }^{1 \S}$
${ }^{1}$ Department of Mathematics and Statistics, Georgia State University
Atlanta, GA 30303, USA
${ }^{2}$ Extremal Combinatorics and Probability Group (ECOPRO)
Institute for Basic Science (IBS), Daejeon, KR

Abstract

The mean subtree order of a given graph G, denoted $\mu(G)$, is the average number of vertices in a subtree of G. Let G be a connected graph. Chin, Gordon, MacPhee, and Vincent [J. Graph Theory, 89(4): 413-438, 2018] conjectured that if H is a proper spanning supergraph of G, then $\mu(H)>\mu(G)$. However, Cameron and Mol [J. Graph Theory, 96(3): 403-413, 2021] have disproved this conjecture by showing that there are infinitely many pairs of graphs H and G with $H \supset G, V(H)=V(G)$ and $|E(H)|=|E(G)|+1$ such that $\mu(H)<\mu(G)$. They also conjectured that for every positive integer k, there exists a pair of graphs G and H with $H \supset G, V(H)=V(G)$ and $|E(H)|=|E(G)|+k$ such that $\mu(H)<\mu(G)$. Furthermore, they proposed that $\mu\left(K_{m}+n K_{1}\right)<\mu\left(K_{m, n}\right)$ provided $n \gg m$. In this note, we confirm these two conjectures.

Keywords: Mean subtree order; Subtree

1 Introduction

Graphs in this paper are simple unless otherwise specified. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. The order of G, denoted by $|G|$, is the number of vertices in G, that is, $|G|=|V(G)|$. The complement of G, denoted by \bar{G}, is the graph on the same vertex set as G such that two distinct vertices of \bar{G} are adjacent if and only if they are not adjacent in G. For an edge subset $F \subseteq E(\bar{G})$, denote by $G+F$ the graph obtained from G by adding the edges of F. For a vertex subset $U \subseteq V(G)$, denote by $G-U$ the graph obtained from G by deleting the vertices of U and all edges incident with them. For any two graphs G_{1}, G_{2} with $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$, denote by $G_{1}+G_{2}$ the graph obtained from G_{1}, G_{2} by adding an edge between any two vertices $v_{1} \in V\left(G_{1}\right)$ and $v_{2} \in V\left(G_{2}\right)$.

[^0]A tree is a graph in which every pair of distinct vertices is connected by exactly one path. A subtree of a graph G is a subgraph of G that is a tree. By convention, the empty graph is not regarded as a subtree of any graph. The mean subtree order of G, denoted $\mu(G)$, is the average order of a subtree of G. Jamison [5, (6) initiated the study of the mean subtree order in the 1980s, considering only the case that G is a tree. In [5], he proved that $\mu(T) \geq \frac{n+2}{3}$ for any tree T of order n, with this minimum achieved if and only if T is a path; and $\mu(T)$ could be very close to its order n. Jamison's work on the mean order of subtrees of a tree has received considerable attention [4, 8, 9, 10, 11]. At the 2019 Spring Section AMS meeting in Auburn, Jamison presented a survey that provided an overview of the current state of open questions concerning the mean subtree order of a tree, some of which have been resolved [1, 7].

Figure 1: Adding the edge between a and b decreases the mean subtree order
Recently, Chin, Gordon, MacPhee, and Vincent [3] initiated the study of subtrees of graphs in general. They believed that the parameter μ is monotonic with respect to the inclusion relationship of subgraphs. More specifically, they [3, Conjecture 7.4] conjectured that for any simple connected graph G, adding any edge to G will increase the mean subtree order. Clearly, the truth of this conjecture implies that $\mu\left(K_{n}\right)$ is the maximum among all connected simple graphs of order n, but it's unknown if $\mu\left(K_{n}\right)$ is the maximum. Cameron and Mol [2 constructed some counterexamples to this conjecture by a computer search. Moreover, they found that the graph depicted in Figure 1 is the smallest counterexample to this conjecture and there are infinitely many graphs G with $x y \in E(\bar{G})$ such that $\mu(G+x y)<\mu(G)$. In their paper, Cameron and Mol [2] initially focused on the case of adding a single edge, but they also made the following conjecture regarding adding several edges.

Conjecture 1.1. For every positive integer k, there are two connected graphs G and H with $G \subset H, V(G)=V(H)$ and $|E(H) \backslash E(G)|=k$ such that $\mu(H)<\mu(G)$.

We will confirm Conjecture 1.1 by proving the following theorem, which will be presented in Section 2.

Theorem 1.2. For every positive integer k, there exist infinitely many pairs of connected graphs G and H with $G \subset H, V(G)=V(H)$ and $|E(H) \backslash E(G)|=k$ such that $\mu(H)<\mu(G)$.

In the same paper, Cameron and $\mathrm{Mol}[2]$ also proposed the following conjecture.
Conjecture 1.3. Let m, n be two positive integers. If $n \gg m$, then we have $\mu\left(K_{m}+n K_{1}\right)<$ $\mu\left(K_{m, n}\right)$.

We can derive Conjecture 1.1 from Conjecture 1.3, the proof of which is presented in Section 3 , by observing that when $m=2 k$, the binomial coefficient $\binom{m}{2}$ is divisible by k. With $2 k-1$ steps, we add k edges in each step, and eventually the mean subtree order decreases, so it must have decreased in some intermediate step.

2 Theorem 1.2

Let G be a graph of order n, and let \mathcal{T}_{G} be the family of subtrees of G. By definition, we have $\mu(G)=\left(\sum_{T \in \mathcal{T}_{G}}|T|\right) /\left|\mathcal{T}_{G}\right|$. The density of G is defined by $\sigma(G)=\mu(G) / n$. More generally, for any subfamily $\mathcal{T} \subseteq \mathcal{T}_{G}$, we define $\mu(\mathcal{T})=\left(\sum_{T \in \mathcal{T}}|T|\right) /|\mathcal{T}|$ and $\sigma(\mathcal{T})=\mu(\mathcal{T}) / n$. Clearly, $1 \leq \mu(G) \leq n$ and $0<\sigma(G) \leq 1$.

2.1 The Construction

Fix a positive integer k. For some integer m, let $\left\{s_{n}\right\}_{n \geq m}$ be a sequence of non-negative integers satisfying: (1) $2 s_{n} \leq n-k-1$ for all $n \geq m$; (2) $s_{n}=o(n)$, i.e., $\lim _{n \rightarrow \infty} s_{n} / n=0$; and (3) $2^{s_{n}} \geq n^{2}$ for all $n \geq m$. Notice that many such sequences exist. Take, for instance, the sequence $\left\{\left\lceil 2 \log _{2}(n)\right\rceil\right\}_{n \geq m}$, as in [2], where m is the least positive integer such that $m-2\left\lceil 2 \log _{2}(m)\right\rceil \geq$ $k+1$.

In the remainder of this paper, we fix P for a path $v_{1} v_{2} \cdots v_{n-2 s_{n}}$ of order $n-2 s_{n}$. Clearly, $|P| \geq k+1$. Furthermore, let $P^{*}:=P-\left\{v_{1}, \ldots, v_{k-1}\right\}=v_{k} \cdots v_{n-2 s_{n}}$.

Figure 2: G_{n}
Let G_{n} be the graph obtained from the path P by joining s_{n} leaves to each of the two endpoints v_{1} and $w:=v_{n-2 s_{n}}$ of P (see Figure 2). Let $G_{n, k}:=G_{n}+\left\{v_{1} w, v_{2} w, \ldots, v_{k} w\right\}$, that is, $G_{n, k}$ is the graph obtained from G_{n} by adding k new edges $e_{1}:=v_{1} w, e_{2}:=v_{2} w, \ldots, e_{k}:=v_{k} w$ (see Figure 3).

Figure 3: $G_{n, k}$

Let $\mathcal{T}_{n, k}$ be the family of subtrees of $G_{n, k}$ containing the vertex set $\left\{v_{1}, v_{k}, w\right\}$ but not containing the path $P^{*}=v_{k} \cdots w$. It is worth noting that $\mathcal{T}_{n, 1}$ is the family of subtrees of $G_{n, 1}$ containing edge $v_{1} w$. Note that the graphs G_{n} and $G_{n, 1}$ defined above are actually the graphs T_{n} and G_{n} constructed by Cameron and Mol in [2], respectively. From the proof of Theorem 3.1 in [2], we obtain the following two results regarding the density of $G_{n}, G_{n, 1}, \mathcal{T}_{n, 1}$.

Lemma 2.1. $\lim _{n \rightarrow \infty} \sigma\left(G_{n}\right)=1$.
Lemma 2.2. $\lim _{n \rightarrow \infty} \sigma\left(G_{n, 1}\right)=\lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n, 1}\right)=\frac{2}{3}$.

The following two technical results concerning the density of $\mathcal{T}_{n, k}$ are crucial in the proof of Theorem 1.2. The proofs of these results will be presented in Subsubsection 2.1.1 and Subsubsection 2.1.2, respectively.

Lemma 2.3. For any fixed positive integer $k, \lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n, k}\right)=\lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n-k+1,1}\right)$.
Lemma 2.4. For any fixed positive integer $k, \lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n, k}\right)=\lim _{n \rightarrow \infty} \sigma\left(G_{n, k}\right)$.
The combination of Lemma 2.2, Lemma 2.3 and Lemma 2.4 immediately yields the following result.

Corollary 2.5. For any fixed positive integer $k, \lim _{n \rightarrow \infty} \sigma\left(G_{n, k}\right)=\frac{2}{3}$.
Combining Lemma 2.1 and Corollary 2.5, we have that $\lim _{n \rightarrow \infty} \sigma\left(G_{n, k}\right)=\frac{2}{3}<1=\lim _{n \rightarrow \infty} \sigma\left(G_{n}\right)$ for any fixed positive integer k. By definition, we gain that $\sigma\left(G_{n, k}\right)=\mu\left(G_{n, k}\right) /\left|G_{n, k}\right|$ and $\sigma\left(G_{n}\right)=\mu\left(G_{n}\right) /\left|G_{n}\right|$. Since $\left|G_{n, k}\right|=\left|G_{n}\right|$, it follows that $\mu\left(G_{n, k}\right)<\mu\left(G_{n}\right)$ for n sufficiently large, which in turn gives Theorem 1.2.

The following result presented in [2, page 408, line -2] will be used in our proof.
Lemma 2.6. $\left|\mathcal{T}_{n, 1}\right|=2^{2 s_{n}} \cdot\binom{n-2 s_{n}}{2}$.

2.1.1 Proof of Lemma 2.3

Let H be the subgraph of $G_{n, k}$ induced by vertex set $\left\{v_{1}, \ldots, v_{k}, w\right\}$ (see Figure 4). Furthermore, set $n_{1}=n-k+1$, and let $G_{n_{1}}^{+}$be the graph obtained from $G_{n, k}$ by contracting vertex set $\left\{v_{1}, \ldots, v_{k}\right\}$ into vertex v_{1} and removing any resulting loops and multiple edges (see Figure 5). Clearly, $G_{n_{1}}^{+}$is isomorphic to $G_{n_{1}, 1}$.

Figure 4: H

Figure 5: $G_{n_{1}}^{+}$
Let $T \in \mathcal{T}_{n, k}$, that is, T is a subtree of $G_{n, k}$ containing the vertex set $\left\{v_{1}, v_{k}, w\right\}$ but not containing the path $P^{*}=v_{k} \cdots w$. Let T_{1} be the subgraph of H induced by $E(H) \cap E(T)$. Since T does not contain the path P^{*}, we have that T_{1} is connected, and so it is a subtree of H. Let T_{2} be the graph obtained from T by contracting vertex set $\left\{v_{1}, \ldots, v_{k}\right\}$ into the vertex v_{1} and removing any resulting loops and multiple edges. Since T_{1} is connected and contains vertex set $\left\{v_{1}, v_{k}, w\right\}$, it follows that T_{2} is a subtree of $G_{n_{1}}^{+}$containing edge $v_{1} w$. So, each $T \in \mathcal{T}_{n, k}$ corresponds to a unique pair $\left(T_{1}, T_{2}\right)$ of trees, where T_{1} is a subtree of H containing vertex set $\left\{v_{1}, v_{k}, w\right\}$, and $T_{2} \in \mathcal{T}_{n_{1}, 1}$. We also notice that $|T|=\left|T_{1}\right|+\left|T_{2}\right|-2$, where the -2 arises due to the fact that T_{1} and T_{2} share exactly two vertices v_{1} and w.

Let $\mathcal{T}_{H}^{\prime} \subseteq \mathcal{T}_{H}$ be the family of subtrees of H containing vertex set $\left\{v_{1}, v_{k}, w\right\}$. By the corresponding relationship above, we have $\left|\mathcal{T}_{n, k}\right|=\left|\mathcal{T}_{H}^{\prime}\right| \cdot\left|\mathcal{T}_{n_{1}, 1}\right|$. Hence, we obtain that

$$
\begin{aligned}
\mu\left(\mathcal{T}_{n, k}\right) & =\frac{\sum_{T \in \mathcal{T}_{n, k}}|T|}{\left|\mathcal{T}_{n, k}\right|}=\frac{\sum_{T_{1} \in \mathcal{T}_{H}^{\prime}} \sum_{T_{2} \in \mathcal{T}_{n_{1}, 1}}\left(\left|T_{1}\right|+\left|T_{2}\right|-2\right)}{\left|\mathcal{T}_{H}^{\prime}\right| \cdot\left|\mathcal{T}_{n_{1}, 1}\right|} \\
& =\frac{\left|\mathcal{T}_{H}^{\prime}\right| \cdot \sum_{T_{2} \in \mathcal{T}_{n_{1}, 1}}\left|T_{2}\right|+\left|\mathcal{T}_{n_{1}, 1}\right| \cdot \sum_{T_{1} \in \mathcal{T}_{H}^{\prime}}\left|T_{1}\right|-2\left|\mathcal{T}_{n_{1}, 1}\right| \cdot\left|\mathcal{T}_{H}^{\prime}\right|}{\left|\mathcal{T}_{H}^{\prime}\right| \cdot\left|\mathcal{T}_{n_{1}, 1}\right|} \\
& =\mu\left(\mathcal{T}_{n_{1}, 1}\right)+\mu\left(\mathcal{T}_{H}^{\prime}\right)-2 .
\end{aligned}
$$

Dividing through by n, we further gain that

$$
\sigma\left(\mathcal{T}_{n, k}\right)=\frac{n_{1}}{n} \cdot \sigma\left(T_{n_{1}, 1}\right)+\frac{k+1}{n} \cdot \sigma\left(\mathcal{T}_{H}^{\prime}\right)-\frac{2}{n} .
$$

Since $\sigma\left(\mathcal{T}_{H}^{\prime}\right)$ is always bounded by 1 , it follows that $\lim _{n \rightarrow \infty} \frac{k+1}{n} \cdot \sigma\left(\mathcal{T}_{H}^{\prime}\right)=0$. Combining this with $\lim _{n \rightarrow \infty} \frac{n_{1}}{n}=1$ and $\lim _{n \rightarrow \infty} \frac{2}{n}=0$, we get $\lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n, k}\right)=\lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n_{1}, 1}\right)=\frac{2}{3}$ (by Lemma 2.2, which completes the proof of Lemma 2.3 .

2.1.2 Proof of Lemma 2.4

Let $\overline{\mathcal{T}}_{n, k}:=\mathcal{T}_{G_{n, k}} \backslash \mathcal{T}_{n, k}$. If $\lim _{n \rightarrow \infty}\left|\overline{\mathcal{T}}_{n, k}\right| /\left|\mathcal{T}_{n, k}\right|=0$, then $\lim _{n \rightarrow \infty} \frac{\left|\overline{\mathcal{T}}_{n, k}\right|}{\left|\mathcal{T}_{n, k}\right|+\left|\overline{\mathcal{T}}_{n, k}\right|}=0$ because $\frac{\left|\overline{\mathcal{T}}_{n, k}\right|}{\left|\mathcal{T}_{n, k}\right|+\left|\overline{\mathcal{T}}_{n, k}\right|} \leq$ $\left|\overline{\mathcal{T}}_{n, k}\right| /\left|\mathcal{T}_{n, k}\right|$, and so $\lim _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{n, k}\right|}{\left|\mathcal{T}_{n, k}\right|+\left|\mathcal{T}_{n, k}\right|}=1$. Hence,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \sigma\left(G_{n, k}\right) & =\lim _{n \rightarrow \infty} \frac{\mu\left(G_{n, k}\right)}{n}=\lim _{n \rightarrow \infty} \frac{1}{n} \cdot\left(\frac{\sum_{T \in \mathcal{T}_{n, k}}|T|}{\left|\overline{\mathcal{T}}_{n, k}\right|+\left|\overline{\mathcal{T}}_{n, k}\right|}+\frac{\sum_{T \in \overline{\mathcal{T}}_{n, k}}|T|}{\left|\mathcal{T}_{n, k}\right|+\left|\overline{\mathcal{T}}_{n, k}\right|}\right) \\
& =\lim _{n \rightarrow \infty}\left(\sigma\left(\mathcal{T}_{n, k}\right) \cdot \frac{\left|\mathcal{T}_{n, k}\right|}{\left|\mathcal{T}_{n, k}\right|+\left|\overline{\mathcal{T}}_{n, k}\right|}+\sigma\left(\overline{\mathcal{T}}_{n, k}\right) \cdot \frac{\left|\overline{\mathcal{T}}_{n, k}\right|}{\left|\mathcal{T}_{n, k}\right|+\left|\overline{\mathcal{T}}_{n, k}\right|}\right)=\lim _{n \rightarrow \infty} \sigma\left(\mathcal{T}_{n, k}\right)
\end{aligned}
$$

Thus, to complete the proof, it suffices to show that $\lim _{n \rightarrow \infty}\left|\overline{\mathcal{T}}_{n, k}\right| /\left|\mathcal{T}_{n, k}\right|=0$. We now define the following two subfamilies of $\mathcal{T}_{G_{n, k}}$.

- $\mathcal{B}_{1}=\left\{T \in \mathcal{T}_{G_{n, k}}: v_{1} \notin V(T)\right.$ or $\left.w \notin V(T)\right\}$; and
- $\mathcal{B}_{2}=\left\{T \in \mathcal{T}_{G_{n, k}}: T \cap P^{*}\right.$ is a path, and T contains $\left.w\right\}$.

Recall that $\mathcal{T}_{n, k}$ is the family of subtrees of $G_{n, k}$ containing vertex set $\left\{v_{1}, v_{k}, w\right\}$ and not containing the path $P^{*}=v_{k} \cdots w$. For any $T \in \overline{\mathcal{T}}_{n, k}$, by definition, we have the following scenarios: $v_{1} \notin V(T)$, and so $T \in \mathcal{B}_{1}$ in this case; $w \notin V(T)$, and so $T \in \mathcal{B}_{1}$ in this case; $v_{k} \notin V(T)$ and $w \in V(T)$, then $T \cap P^{*}$ is a path, and so $T \in \mathcal{B}_{2}$ in this case; $P^{*} \subseteq T$, and so $T \in \mathcal{B}_{2}$ in this case. Consequently, $\overline{\mathcal{T}}_{n, k} \subseteq \mathcal{B}_{1} \cup \mathcal{B}_{2}$, which in turn gives that

$$
\begin{equation*}
\left|\overline{\mathcal{T}}_{n, k}\right| \leq\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right| . \tag{1}
\end{equation*}
$$

Let $S_{v_{1}}$ denote the star centered at v_{1} with the s_{n} leaves attached to it and S_{w} denote the star centered at w with the s_{n} leaves attached to it. Then $G_{n, k}$ is the union of four subgraphs $S_{v_{1}}, S_{w}, H$, and P^{*}.

- Considering the subtrees of $S_{v_{1}}$ with at least two vertices and the subtrees of $S_{v_{1}}$ with a single vertex, we get $\left|\mathcal{T}_{S_{v_{1}}}\right|=\left(2^{s_{n}}-1\right)+\left(s_{n}+1\right)=2^{s_{n}}+s_{n}=2^{s_{n}}+o\left(2^{s_{n}}\right)$.
- Considering the subtrees of S_{w} with at least two vertices and the subtrees of S_{w} with a single vertex, we get $\left|\mathcal{T}_{S_{w}}\right|=\left(2^{s_{n}}-1\right)+\left(s_{n}+1\right)=2^{s_{n}}+s_{n}=2^{s_{n}}+o\left(2^{s_{n}}\right)$.
- Considering the subpaths of P^{*} with at least two vertices and the subpaths of P^{*} with a single vertex, we get $\left|\mathcal{T}_{P^{*}}\right|=\binom{\left|P^{*}\right|}{2}+\left|P^{*}\right|=\binom{\left|P^{*}\right|+1}{2}=\binom{n-2 s_{n}-k+2}{2} \leq \frac{n^{2}}{2}$.
- The number of subpaths of P^{*} containing w is bounded above by $\left|P^{*}\right|=n-2 s_{n}-k+1 \leq n$.

Since $s_{n}=o(n)$, we have the following two inequalities

$$
\begin{aligned}
\left|\mathcal{B}_{1}\right| & \leq\left(s_{n}+\left|\mathcal{T}_{H}\right| \cdot\left|\mathcal{T}_{P^{*}}\right| \cdot\left|\mathcal{T}_{S_{w}}\right|\right)+\left(s_{n}+\left|\mathcal{T}_{H}\right| \cdot\left|\mathcal{T}_{P^{*}}\right| \cdot\left|\mathcal{T}_{S_{v_{1}}}\right|\right) \\
& \leq 2\left[s_{n}+\left|\mathcal{T}_{H}\right| \cdot\left(2^{s_{n}}+o\left(2^{s_{n}}\right)\right) \cdot \frac{n^{2}}{2}\right]=\left|\mathcal{T}_{H}\right| \cdot\left(2^{s_{n}} \cdot n^{2}+o\left(2^{s_{n}} \cdot n^{2}\right)\right) \\
\left|\mathcal{B}_{2}\right| & \leq\left|\mathcal{T}_{S_{v_{1}}}\right| \cdot\left|\mathcal{T}_{S_{w}}\right| \cdot\left|P^{*}\right| \cdot\left|\mathcal{T}_{H}\right|=\left(2^{2 s_{n}} \cdot n+o\left(2^{2 s_{n}} \cdot n\right)\right) \cdot\left|\mathcal{T}_{H}\right|
\end{aligned}
$$

Recall that $n_{1}=n-k+1$. Applying Lemma 2.6, we have

$$
\left|\mathcal{T}_{n, k}\right|=\left|\mathcal{T}_{H}^{\prime}\right| \cdot\left|\mathcal{T}_{n_{1}, 1}\right|=\left|\mathcal{T}_{H}^{\prime}\right| \cdot 2^{2 s_{n}}\binom{n_{1}-2 s_{n}}{2}=\left|\mathcal{T}_{H}^{\prime}\right| \cdot 2^{2 s_{n}} \cdot\left(\frac{n^{2}}{2}-o\left(n^{2}\right)\right) .
$$

Recall that $2^{s_{n}} \geq n^{2}$. Since $\left|\mathcal{T}_{H}\right|$ is bounded by a function of k because $|H|=k+1$, we have the following two inequalities.

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{B}_{1}\right|}{\left|\mathcal{T}_{n, k}\right|}=\lim _{n \rightarrow \infty} \frac{\left|\mathcal{T}_{H}\right| \cdot 2^{s_{n}} \cdot n^{2}}{\left|\mathcal{T}_{H}^{\prime}\right| \cdot 2^{2 s_{n}} \cdot \frac{n^{2}}{2}}=\lim _{n \rightarrow \infty} \frac{2\left|\mathcal{T}_{H}\right|}{\left|\mathcal{T}_{H}^{\prime}\right| \cdot 2^{s_{n}}}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{B}_{2}\right|}{\left|\mathcal{T}_{n, k}\right|}=\lim _{n \rightarrow \infty} \frac{2^{2 s_{n}} \cdot n \cdot\left|\mathcal{T}_{H}\right|}{\left|\mathcal{T}_{H}^{\prime}\right| \cdot 2^{2 s_{n}} \cdot \frac{n^{2}}{2}}=\lim _{n \rightarrow \infty} \frac{2 \cdot\left|\mathcal{T}_{H}\right|}{\left|\mathcal{T}_{H}^{\prime}\right| \cdot n}=0 .
$$

Hence, we conclude that

$$
\lim _{n \rightarrow \infty} \frac{\left|\mathcal{B}_{1}\right|+\left|\mathcal{B}_{2}\right|}{\left|\mathcal{T}_{n, k}\right|}=0
$$

Combining this with [1], we have that $\lim _{n \rightarrow \infty}\left|\overline{\mathcal{T}}_{n, k}\right| /\left|\mathcal{T}_{n, k}\right|=0$, which completes the proof of Lemma 2.4 .

2.2 An Alternative Construction

The graphs we constructed in order to prove Theorem 1.2, and the sets of k edges that were added to them, are certainly not the only examples that could be used to prove Theorem 1.2. For example, the k-edge set $\left\{v_{1} w, v_{2} w, \ldots, v_{k} w\right\}$ can be replaced by the k-edge set $\left\{v_{1} v_{n-2 s_{n}}, v_{2} v_{n-2 s_{n}-1}\right.$, $\left.\ldots, v_{k} v_{n-2 s_{n}-k+1}\right\}$.

Fix a positive integer k and let n be an integer much larger than k. We follow the notation given in Section 2. Recall that G_{n} is obtained from a path $P:=v_{1} v_{2} \cdots v_{n-2 s_{n}}$ by attaching two stars centered at v_{1} and $v_{n-2 s_{n}}$, and $\lim _{n \rightarrow \infty} \sigma\left(G_{n}\right)=1$. Let $E_{k}:=\left\{v_{i_{1}} v_{j_{1}}, v_{i_{2}} v_{j_{2}}, \ldots, v_{i_{k}} v_{j_{k}}\right\}$ be a set of k edges in $\overline{G_{n}}$ such that $1 \leq i_{1}<j_{1} \leq i_{2}<j_{2} \leq \cdots \leq i_{k}<j_{k} \leq n-2 s_{n}$. Let $H_{n, k}=G_{n}+E_{k}$. For convenience, we assume that $j_{\ell}-i_{\ell}$ have the same value, say p, for $\ell \in\{1, \ldots, k\}$.

A simple calculation shows that for each path Q of order q, we have $\mu(Q)=(q+2) / 3$ (See Jamison [5]), and so $\lim _{q \rightarrow \infty} \sigma(Q)=1 / 3$. For any non-empty subset $F \subseteq E_{k}$, we define $\mathcal{T}_{F}=\{T \in$ $\left.\mathcal{T}_{H_{n, k}}: E(T) \cap E_{k}=F\right\}$. For any edge $v_{i_{\ell}} v_{j_{\ell}} \in F$, let $e_{\ell}=v_{i_{\ell}} v_{j_{\ell}}$ and $P_{\ell}=v_{i_{\ell}} v_{i_{\ell}+1} \cdots v_{j_{\ell}}$. Note that every tree $T \in \mathcal{T}_{F}$ is a union of a subtree of $H_{n, k}-\cup_{e_{\ell} \in F}\left(V\left(P_{\ell}\right) \backslash\left\{v_{i_{\ell}}, v_{j_{\ell}}\right\}\right)$ containing F and $\cup_{e_{\ell} \in F}\left(E\left(P_{\ell}\right)-E\left(P_{\ell}^{*}\right)\right)$ for some path $P_{\ell}^{*} \subseteq P_{\ell}$ containing at least one edge. Since $\left|E\left(P_{\ell}\right)\right|=p$, the line graph of P_{ℓ} is a path of order p. Consequently, the mean of $\left|E\left(P_{\ell}^{*}\right)\right|$ over subpaths of P_{ℓ} is $(p+2) / 3$. Hence, the mean of $\left|E\left(P_{\ell}\right)-E\left(P_{\ell}^{*}\right)\right|$ over all subpaths P_{ℓ}^{*} of P_{ℓ} is $p-(p+2) / 3=2(p-1) / 3$ for each $e_{\ell} \in F$. Let $s=|F|$. Since every subtree $T \in \mathcal{T}_{F}$ has at most $n-s(p-1)$ vertices outside $\cup_{e_{\ell} \in F}\left(P_{\ell}-v_{i_{\ell}}-v_{j_{\ell}}\right)$, we get the following inequality.

$$
\mu\left(\mathcal{T}_{F}\right) \leq n-s(p-1)+s \cdot \frac{2(p-1)}{3} \leq n-\frac{s(p-1)}{3}
$$

By taking p as a linear value of n, say $p=\alpha n\left(\alpha<\frac{1}{k}\right)$, we get $\sigma\left(\mathcal{T}_{F}\right) \leq 1-s \alpha / 3+s / 3 n<\sigma\left(G_{n}\right)$ since we assume that n is much larger than k. Since $\mathcal{T}_{H_{n, k}}=\bigcup_{F \subseteq E_{k}} \mathcal{T}_{F}$, we have $\sigma\left(H_{n, k}\right)<$ $\sigma\left(G_{n}\right)$, and so $\mu\left(H_{n, k}\right)<\mu\left(G_{n}\right)$.

3 Proof of Conjecture 1.3

To simplify notation, we let $G:=K_{m}+n K_{1}$, where $V(G)=V\left(K_{m, n}\right)$. Denote by A and B the two color classes of $K_{m, n}$ with $|A|=m$ and $|B|=n$, respectively. For each tree $T \subseteq G$, we have $E(T) \cap E\left(K_{m}\right)=\emptyset$ or $E(T) \cap E\left(K_{m}\right) \neq \emptyset$. This implies that the family of subtrees of G consists of the subtrees of $K_{m, n}$ and the subtrees sharing at least one edge with K_{m}. For each tree $T \subseteq G$, let $A(T)=V(T) \cap A$ and $B(T)=V(T) \cap B$. Then, $|T|=|A(T)|+|B(T)|$. Furthermore, let $B_{2}(T)$ and $B_{\geq 2}(T)$ be the sets of vertices $v \in B(T)$ such that $d_{T}(v)=2$ and $d_{T}(v) \geq 2$, respectively. Clearly, $B_{2}(T) \subseteq B_{\geq 2}(T) \subseteq B(T)$. We define a subtree $T \in \mathcal{T}_{G}$ to be a
b-stem if $B_{\geq 2}(T)=B(T)$, which means that $d_{T}(v) \geq 2$ for any $v \in B(T)$.
Let T be a b-stem and assume that T contains f edges in K_{m}. Counting the number of edges in T, we obtain $|E(T)|=f+\sum_{v \in B(T)} d_{T}(v)$. Since T is a tree, we have $|E(T)|=|T|-1=$ $|A(T)|+|B(T)|-1$. Therefore, we gain

$$
\begin{equation*}
|B(T)|=|A(T)|-1-\left(f+\sum_{v \in B(T)}\left(d_{T}(v)-2\right)\right) . \tag{2}
\end{equation*}
$$

Since T is a b-stem, we have $\sum_{v \in B(T)}\left(d_{T}(v)-2\right) \geq 0$, which implies that $|B(T)| \leq|A(T)|-1 \leq$ $m-1$. Thus, $|T|=2|A(T)|-\left(1+f+\sum_{v \in B(T)}\left(d_{T}(v)-2\right)\right) \leq 2|A(T)|-1$. It follows that a b-stem $T \in \mathcal{T}_{G}$ is the max b-stem, i.e., the b-stem with the maximum order among all b-stems in \mathcal{T}_{G}, if and only if $A(T)=A, E(T) \cap E\left(K_{m}\right)=\emptyset$, and $B_{2}(T)=B_{\geq 2}(T)$. This is equivalent to saying that T is a max b-stem if and only if $|A(T)|=m$ and $|B(T)|=m-1$.

The b-stem of a tree $T \subset G$ is the subgraph induced by $A(T) \cup B_{\geq 2}(T)$, and it is a subtree in \mathcal{T}_{G}. It is worth noting that the b-stem of every subtree $T \subset G$ exists, except for the case when T is a tree with only one vertex belonging to B. Conversely, given a b-stem T_{0}, a tree $T \subset G$ contains T_{0} as its b-stem if and only if $T_{0} \subseteq T, A(T)=A\left(T_{0}\right)$, and $B(T) \backslash B\left(T_{0}\right)$ is a set of vertices with degree 1 in T. Equivalently, T can be obtained from T_{0} by adding vertices in $B(T) \backslash B\left(T_{0}\right)$ as leaves. So, there are exactly $\left(\left|A\left(T_{0}\right)\right|+1\right)^{n-\left|B\left(T_{0}\right)\right|}$ trees containing T_{0} as their b-stem.

For two non-negative integers a, b, let $\mathcal{T}_{G}(a, b)$ (resp. $\mathcal{T}_{K_{m, n}}(a, b)$) be the family of subtrees in \mathcal{T}_{G} (resp. $\mathcal{T}_{K_{m, n}}$) whose b-stems T_{0} satisfy $\left|A\left(T_{0}\right)\right|=a$ and $\left|B\left(T_{0}\right)\right|=b$. For any $A_{0} \subseteq A$ and $B_{0} \subseteq B$, let $f_{G}\left(A_{0}, B_{0}\right)$ (resp. $f_{K_{m, n}}\left(A_{0}, B_{0}\right)$) denote the number of b-stems T_{0} spanned by $A_{0} \cup B_{0}$; that is, $A\left(T_{0}\right)=A_{0}$ and $B_{\geq 2}\left(T_{0}\right)=B_{0}$. Clearly, $f_{G}\left(A_{0}, B_{0}\right)$ and $f_{K_{m, n}}\left(A_{0}, B_{0}\right)$ depend only on $\left|A_{0}\right|$ and $\left|B_{0}\right|$, so we can denote them by $f_{G}\left(\left|A_{0}\right|,\left|B_{0}\right|\right)$ and $f_{K_{m, n}}\left(\left|A_{0}\right|,\left|B_{0}\right|\right)$, respectively. By counting, we have $\left|\mathcal{T}_{G}(a, b)\right|=\binom{m}{a} \cdot\binom{n}{b} \cdot f_{G}(a, b) \cdot(a+1)^{n-b}$ and $\left|\mathcal{T}_{K_{m, n}}(a, b)\right|=$ $\binom{m}{a} \cdot\binom{n}{b} \cdot f_{K_{m, n}}(a, b) \cdot(a+1)^{n-b}$, due to the fact that there are $\binom{m}{a}$ ways to pick an a-set in A and $\binom{n}{b}$ ways to pick a b-set in B. Since $a \leq m$ and $b \leq m-1$, there exist positive numbers c_{1} and c_{2} that depend only on m, such that

$$
\begin{equation*}
c_{1} n^{b}(a+1)^{n-b} \leq\left|\mathcal{T}_{G}(a, b)\right| \leq c_{2} n^{b}(a+1)^{n-b} \tag{3}
\end{equation*}
$$

Note that if $(a, b) \neq(m, m-1)$, then we have $b \leq m-2$. Applying inequality (3), we get $\left|\cup_{(a, b) \neq(m, m-1)} \mathcal{T}_{G}(a, b)\right| \leq c_{3}\left|\mathcal{T}_{G}(m, m-1)\right| / n$ for some constant $c_{3}>0$ depending only on m.

Given a b-stem T_{0} with $\left|A\left(T_{0}\right)\right|=a$ and $\left|B\left(T_{0}\right)\right|=b$, let T be a tree chosen uniformly at random from \mathcal{T}_{G} (resp. $\mathcal{T}_{K_{m, n}}$) that contains T_{0} as its b-stem. Then, the probability of a vertex $v \in B \backslash B\left(T_{0}\right)$ in T is $\frac{a}{a+1}$. This shows that the mean order of trees containing T_{0} as their bstem is $(n-b) \frac{a}{a+1}+a+b$, denoted by $\mu(a, b)$. Note that $\sum_{T \in \mathcal{T}_{G}(a, b)}|T|=\mu(a, b) \cdot\left|\mathcal{T}_{G}(a, b)\right|$
and $\sum_{T \in \mathcal{T}_{K_{m, n}(a, b)}}|T|=\mu(a, b) \cdot\left|\mathcal{T}_{K_{m, n}}(a, b)\right|$. Assume that T_{0} has f edges in K_{m}, and set $c=$ $\sum_{v \in B\left(T_{0}\right)}\left(d_{T_{0}}(v)-2\right)$. Using $\sqrt{2}$, we have $b=a-(1+f+c)$. Hence, $\mu(a, b)=\frac{(n+2+a) \cdot a}{a+1}-\frac{1+f+c}{a+1}$, which reaches its maximum value when $a=m$ and $f=c=0$, i.e., when T_{0} is a max b-stem. We then have:

$$
\begin{gathered}
\mu(G)=\frac{\mu(m, m-1)\left|\mathcal{T}_{G}(m, m-1)\right|+\sum_{(a, b) \neq(m, m-1)} \mu(a, b)\left|\mathcal{T}_{G}(a, b)\right|+n}{\left|\mathcal{T}_{G}(m, m-1)\right|+\sum_{(a, b) \neq(m, m-1)}\left|\mathcal{T}_{G}(a, b)\right|}, \\
\mu\left(K_{m, n}\right)=\frac{\mu(m, m-1)\left|\mathcal{T}_{K_{m, n}}(m, m-1)\right|+\sum_{(a, b) \neq(m, m-1)} \mu(a, b)\left|\mathcal{T}_{K_{m, n}}(a, b)\right|+n}{\left|\mathcal{T}_{K_{m, n}}(m, m-1)\right|+\sum_{(a, b) \neq(m, m-1)}\left|\mathcal{T}_{K_{m, n}}(a, b)\right|},
\end{gathered}
$$

where n denotes the number of subtrees with a single vertex in B.
Note that $\left|\mathcal{T}_{G}(a, b)\right| \geq\left|\mathcal{T}_{K_{m, n}}(a, b)\right|$, with equality holding if and only if $a=b-1$, and so in particular when $(a, b)=(m, m-1)$. We have derived before that $0<\mu(a, b)<\mu(m, m-1)$ when $(a, b) \neq(m, m-1)$. Using the inequality $\left|\cup_{(a, b) \neq(m, m-1)} \mathcal{T}_{G}(a, b)\right| \leq c_{3}\left|\mathcal{T}_{G}(m, m-1)\right| / n$, we conclude that $\mu(G)>\frac{n}{n+c_{3}} \mu(m, m-1)>\max _{(a, b) \neq(m, m-1)} \mu(a, b)$ for n sufficiently large (for fixed m).

Since $\mu\left(K_{m, n}\right)$ is the average of the same terms, as well as some additional terms of the form $\mu(a, b)$, which are smaller than $\mu(G)$, we conclude that $\mu(G)<\mu\left(K_{m, n}\right)$. This completes the proof.

Acknowledgments

We would like to express our sincere gratitude to the two anonymous referees for their valuable comments and suggestions that improved this manuscript.

References

[1] Stijn Cambie, Stephan Wagner, and Hua Wang. On the maximum mean subtree order of trees. European Journal of Combinatorics, 97:103388, 2021.
[2] Ben Cameron and Lucas Mol. On the mean subtree order of graphs under edge addition. J. Graph Theory, 96(3):403-413, 2021.
[3] Alex J. Chin, Gary Gordon, Kellie J. MacPhee, and Charles Vincent. Subtrees of graphs. J. Graph Theory, 89(4):413-438, 2018.
[4] John Haslegrave. Extremal results on average subtree density of series-reduced trees. J. Combin. Theory Ser. B, 107:26-41, 2014.
[5] Robert E. Jamison. On the average number of nodes in a subtree of a tree. J. Combin. Theory Ser. B, 35(3):207-223, 1983.
[6] Robert E. Jamison. Monotonicity of the mean order of subtrees. J. Combin. Theory Ser. B, 37(1):70-78, 1984.
[7] Zuwen Luo, Kexiang Xu, Stephan Wagner, and Hua Wang. On the mean subtree order of trees under edge contraction. Journal of Graph Theory, 102(3):535-551, 2023.
[8] Lucas Mol and Ortrud R. Oellermann. Maximizing the mean subtree order. J. Graph Theory, 91(4):326-352, 2019.
[9] Andrew Vince and Hua Wang. The average order of a subtree of a tree. J. Combin. Theory Ser. B, 100(2):161-170, 2010.
[10] Stephan Wagner and Hua Wang. Indistinguishable trees and graphs. Graphs Combin., 30(6):1593-1605, 2014.
[11] Stephan Wagner and Hua Wang. On the local and global means of subtree orders. J. Graph Theory, 81(2):154-166, 2016.

[^0]: *supported by the Institute for Basic Science (IBS-R029-C4), current affiliation: KU Leuven, stijn.cambie@hotmail.com
 ${ }^{\dagger}$ Partially supported by NSF grant DMS-1855716, gchen@gsu.edu
 ${ }^{\ddagger}$ yhao4@gsu.edu
 §ntokar1@gsu.edu

